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A formal derivation of a generalized equation of a Wigner distribution function 
including all many-body effects and all scattering mechanisms is given. The 
result is given in integral operator form suitable for application to the numerical 
modeling of quantum tunneling and quantum interference solid state devices. In 
the absence of scattering and many-body effects, the result reduces to the 
"noninteracting-particle" Wigner distribution function equation, often used to 
simulate resonant tunneling devices. The derivation uses a Weyl transform 
technique which can easily incorporate Bloch electrons. Weyl transforms of self- 
energies are derived. Various simplifications of a general quantum transport 
equation for semiconductor device analysis and self-consistent numerical simula- 
tion of a quantum distribution function in the phase-space/frequency-time 
domain are discussed. Recent attempts to include collisions in the Wigner dis- 
tribution-function approach to the numerical simulation of tunneling devices are 
clearly shown to be non-self-consistent and inaccurate; more accurate numerical 
simulation is needed for a deeper understanding of the effects of collision and 
scattering. 

KEY WORDS: Wigner distribution function; Weyl transform; non- 
equilibrium Green's function technique; quantum distribution function; many- 
body quantum transport equation; quantum Boltzmann equation; Kadanoff- 
Baym Ansatz; electron-phonon scatterings. 

1. I N T R O D U C T I O N  

Discus s ions  of  q u a n t u m  t r a n s p o r t  in the  l i te ra ture ,  s t a r t ing  wi th  the  w o r k  

of  K a d a n o f f  a n d  B a y m  (1) a n d  Ke ldysh ,  (2) us ing  the  G r e e n ' s  f unc t i on  techni -  
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que for dissipative systems initiated by Schwinger, (3) often focus on the 
derivation of the so-called quantum Boltzmann equation (QBE). (4 6,24~ 
Although these works give the essential corrections to the classical 
Boltzmann equation, the resulting equations are not useful for application 
to resonant tunneling heterostructure devices. The major reason for the 
lack of usefulness is that these equations are obtained for a slowly varying 
field in space and time. In heterojunction quantum-based devices, strong 
nonuniformity in space coupled with very high-frequency operation (7 9) 
almost always invalidates these assumptions. 

In recent years, numerical simulations and device characterizations of 
resonant-tunneling devices (RTD) have been achieved through the use of 
the Wigner distribution function equation, (7-1~ first written by Wigner 
more than five decades ago. These numerical simulations have clearly 
demonstrated the potential of these quantum-based devices for very high 
frequency operation in the tera hertz range. (7 91 The potential for the 
practical utilization of these devices, and other quantum-based devices, for 
commercial and military applications seems unlimited. Moreover, coupling 
of the quantum transport numerical technique with the self-consistent 
ensemble particle Monte Carlo technique will further enchance the 
applicability of transport device physics for modeling novel heterojunction 
devices. A way to couple accurately ensemble particle Monte Carlo with 
space- and time-dependent quantum tunneling has recently been advocated 
by the author (H) via transformation of quantum transport into a "quantum 
particle trajectory" representation. ~ 

The inclusion of many-body effects and scattering/dissipation in the 
original Wigner distribution function equation, which is essential for a 
realistic simulation of RTD in the quantum region, has not always been 
clear in the literature. In most cases, these are done by using analogies 
to the classical Boltzmann equation or by applying other heuristic 
arguments (~2~ and trying out in the computer to see if one gets reasonable 
results. What is needed for more exact numerical work is an exact 
formalism for including many-body effects and scatterings in the "non- 
interacting-particle" Wigner distribution function equation. Any approxi- 
mation must then be based on an exact formulation in order to define 
clearly the range of validity of the approximation. To the author's 
knowledge, an exact formulation of a generalized Wigner distribution 
function transport equation has not been treated in the literature. What has 
often been treated is the generalized Boltzmann transport equation (QBE) 
at very high constant electric field. Because of the highly nonuniform space- 
and time-dependent field distribution in realistic devices, these types of 
formulations are not of much help for the numerical work of device 
physicists. 
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The purpose of this paper is to present a formal derivation of a 
generalized Wigner transport equation including all many-body effects and 
scattering mechanisms, which is useful for numerical work. I use the theory 
of the nonequilibrium Green's function technique, originally treated by 
Schwinger, (3) Kadanoff and Baym, (1/and Keldysh. (2) From the equation of 
motion for the nonequilibrium Green's equations, the so-called quantum 
Boltzmann equation follows when the assumptions of slow time and space 
variations in the system are made. With an eye to numerical simulation, 
I avoid these assumptions and formulate an exact integral form of a 
generalized Wigner distribution transport equation which immediately 
gives the conventional Wigner distribution function equation in the limit of 
vanishing self-energies for nonrelativistic particles. In passing, it is worth 
noting that all QBE results do not yield the noninteracting "single-particle" 
Wigner distribution quantum transport equation in the absence of colli- 
sions and scatterings. 

2. N O N E Q U I L I B R I U M  G R E E N ' S  F U N C T I O N  F O R M A L I S M  

For a nonequilibrium or nonstationary system, where dynamics is 
dependent on the direction of time, no state of the system in the future may 
be identified with any state in the past. For this reason, expectation values 
and Green's functions are defined on a contour in which the time 
arguments runs from the initial time to to the "far" future (e.g., largest time 
argument of the Green's function) and then back to t o . With this definition, 
a perturbation expansion of the Green's function along the path is 
analogous to the conventional many-body equilibrium Green's function 
expansion and a separation of many-body interaction terms into self-energy 
parts and single-particle Green's function terms is justified for expectation 
values defined along this contour. 

With time arguments along the contour, the nonequilibrium Green's 
function is defined as 

iG(xa, tl, x2, t2)=- (~tH(xl ,  tl) ~ ( x 2 ,  t2)) (1) 

where the time ordering operator T orders the time argument along the 
contour. Thus, we may write also 

G(xl, tl, x2, t2) = O(tl,  t2) a > ( x l ,  tl, x2, t2) + O(t2, tl) G<(xl,  tl, x2, t2) 

(2) 
where 

O(tl, t 2 )  = 1 if tl is later on a contour than t 2 

= 0 if tl is earlier than t 2 
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Employing Feynman's perturbation expansion method or Schwinger's 
variational/~3) method for introducing the self-energy, we have that the 
Green's function satisfies integral equations with time arguments defined on 
the contour in the usual fashion as 

~d2 GLI(1, 2) G~t~(2, 1') = 6~a(1, 1') (3) 

d2 G=o(1, 2) G.~(2, 1') = 6=e(1, 1') (4) 

Separating the self-energy, we have 

d2 G~ 2') G.~(2, 1') = 6~e(1, 1')+ f d2 S=~(1, 2) G~e(2, 1') (5) 

where 

o-~ +~ G~.(1, 2)S~e(2, 1) (6) {~ d2 G~(1, 2) Goe (2, 1') = 6=e(1, 1') d2 

G~ (1, 2)= i &l E~ - V1 6~(1, 2) (7) 

The last two equations give the equations of motion obeyed by the Green's 
function 

h 0  1' /& ,  E . ( - ~ V 1 ) ] G ~ ( 1 ,  ) 

= 6=~(1, 1') + ~ d2 S=o(1, 2) G~(2, 1') (8) 

= 6~r 1') + f d2 G~(1, 2) So~(2, 1') (9) 

which correspond to the well-known Dyson equations, 

G=fl(1, 1')= G=~ 1 ' )+~ d2 ~ d3 G~~ 2) S~.(2, 3) G,~(3, 1') (10) 

G~(1, 1') = G~~ 1') + ~ d2 f d3 G~(1, 2) X~,(2, 3) G~ 1') (11) 

In the above equations, E~(k) is the energy band function for band index 
c~, time integration is along the contour, and the Einstein summation 
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convention for the Greek indices is used. The "self-energy" X has the 
following general form (13'14)" 

where 

Z~(1,  2 )=  6(t I , /2)2~wF'tx~, x2, tl) + O(tl, t2)S~(1, 2) 

+ O(t2, tl) S~(1,  2) (12) 

HF ~ V H F =  V(X1 ) 0~/~(1, 1')_~_ v" (Xl,  Xl ' tl  ) (13) 

and V(xl) is the external potential and ~v S ~  (x~, xl ,  tl) is the Hartree-Fock 
approximation to the self-energy. 

For simplicity in what follows we will consider only a one-band model 
and drop the Greek indices altogether. However, the inclusion of multi- 
band indices is straightforward and the treatment is analogous to the 
method given by Korenman (15) in his work on gas lasers. For deriving the 
quantum transport equation, we are interested in the equations for 
G<(xl, t l ,x2, t2), which is related to the particle densities. These are 
obtained from Eqs. (8) and (9) by fixing the order of the time arguments 
in the Green's functions. From Eq. (8), we have 

,, 

f dx2 x2, tl) = ~vTVHF(x1, G ~ (x2, t2, 1') 

ft tl + d2 [s>(1, 2 ) - s< (1 ,  2)3 G~(L l') 
o 

Ij ~ + d2S~(1,2)[G>(2, 1')-G<(2, 1')] (14) 
1' 

which corresponds to Eqs. (8.27a) and (8.27b) of Kadanoff and Baym, (I) 
where the expectation values are taken with respect to the equilibrium 
density operator, which in the limit t o ~ -oQ gives the same results. From 
Eq. (9), we have 

= f dx2 G~(1, x2, t~,) zvHV(x2, Xl, tl,) 

+ d 2 [ G > ( 1 , 2 ) - G < ( 1 , 2 ) ] S ~ ( 2 , 1  '1 
o 

f '~ + a2 c~( i ,  2)[s>(2, 1 '1- r<(2 ,  1')] (I5) 
l 1 ' 
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which corresponds to Eqs. (8.28a) and (8.28b) of Kadanoff and Baym. '~ 
To transform the above equations into representation-independent 
equations, in the limit to --' -0% we need to defined advanced and retarded 
functions on the real-time axis (i.e., not on the contour) for the Green's 
functions and self-energy functions. For arbitrary double-argument func- 
tions in space-time, we define 

U(1, 2 )=  O(t~- t2)[F> (1, 2 ) -  (F< (1, 2)] (16) 

F~(1, 2 )=  --O(t2- t~)[g>(1, 2)--F<(1,  2)] (17) 

These "unequal-time" functions essentially describe the propagation of 
particles. Therefore, using the above definition of retarded and advanced 
functions, we can write Eqs. (14) and (15) as follows: 

h ~  
- - - -  G~(1, 1') = Jt~G <> +Z~G ~ +Z~G ~ (14a) 

i c~tx 

h 0 
- - -  G~(1, 1') = G ~ f  + G"Z ~ + G ~Z ~ (15a) 
i C~tl, 

where 

J t~(1 ,2 )=IE~( -  ~V1)+ V(1)16(1-2)+6( t l - t2 )XHV(x l ,x2 ,  tl) (18) 

The inclusion of the exchange term introduces nonlocality in space in the 
effective potential included in ~ .  Essentially H incorporates the dynamical 
properties of the particles, whereas terms involving Z <~ describe the 
scatterings. 

In order to obtain the time evolution equation for the densities, first 
we have to subtract Eq. (15a) from Eq. (14a), which yields coupled equa- 
tions for G < and G >, 

= [~t ~, G ~] +ZrG ~ - G r Z  X +ZXG a -  G~Z a (19) 

which can be written in entirely representation-independent form as 

[G o 1 - Z ~ , G ~ ] = ( Z r G ~ + Z ~ G a ) - ( G r Z ~ + G ~ Z ~  (20) 

where 

Z~(1, 1 ')=6(1,  1') V(1)+6( t~- tv )xnV(x , ,x l , ,  t~) (21) 



Wigner Distribution-Function Equation 1229 

Square bracket indicate commutation of terms separated by a comma. It is 
easy to show that Eq. (20) can also be written in the following form: 

i-GO-1 __y'a G ~ ] = 2tt ,, 

+ �89  ~ , ( G r + G a ) ]  • ~ G r - 2 t  , - G " }  (22) 

which is the result obtained by Langreth and Wilkins (~6) using the analytic 
continuation procedure of Kadanoff and Baym. (~) The curly brackets in 
Eq. (22) indicate the anticommutation operation of terms separated by a 
comma. 

We note that the self-energies and Green's functions obey the Her- 
mitian relations 

[iF(l,  2)]* = iF(I, 2) 

[iF<> (1, 2)]* = iF~(1, 2) 

[U(1,  2)]+ = F"(1, 2) 

(23) 

(24) 

(25) 

Indeed, for the "fixed-time order" Green's functions we have, for example, 

G<(1, 2)* = G<*(2, 1) 

= i<0~(1)  @H(2))* 

= - i < 0 ~ ( 2 )  OH(l)> 

= - G < ( 1 ,  2) (26) 

Therefore, we have [iG<(1, 2 ) ]*=  iG<(1, 2), i.e., iG<(1, 2) is self-adjoint, 
which is the reason why Kadanoff and Baym (1) like to multiply the 
Green's functions by i when taking their "Fourier transform in relative 
coordinates," since the results are real quantities. 

From Eq. (25) we can define Hermitian functions, 

1 
Re gr(1, 2) = ~  [Fr(1, 2) + F"(1, 2)] (27) 

[Re F'(1,  2)]* = Re Fr(1, 2) (28) 

1 
Im Fr(1, 2) = ~ [Fr(1, 2) - F~(1, 2)] (29) 

Jim Fr(1, 2)] t = Im Fr(1, 2) (30) 

The sigtaificance of the above definitions stems from an important result 
that the Weyl transform (17) (more will be said about this later) of a 
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Hermitian operator is a real quantity. This can easily be seen, for instance, 
in Hermitian Hamiltonian operators, where the Weyl transforms corre- 
spond to the classical expression for the energies, which are real. We also 
have the relation 

Re U(1,  2) = ie(tl - t2) Im F ( 1 ,  2) (32) 

where the skew-symmetric function 2(11 - - t 2 )  is defined as 

e ( t l -  t2) = O(t~ -- t 2 ) -  O(t2 - t~) (32) 

For  further simplications of Eq. (22), we define the Hermitian 
functions 

A(1, 2 ) =  - 2 I m G r ( 1 , 2 ) = i [ G > ( 1 , 2 ) - G < ( 1 , 2 ) ]  (33) 

F(1, 2) = - 2 I m S r ( 1 , 2 ) = i [ S > ( 1 , 2 ) - X < ( 1 , 2 ) ]  (34) 

which also allows us to write 

- i  
Re G~(1, 2 ) =  ~ - e ( t l -  t2) A(I, 2) 

z 

- i  
Re S t ( l ,  2) = --Z-- e(tl -- t2) V(1, 2) 

A 

(35) 

(36) 

1 A} ' 1 {F, - g  (37) 

which is the same as that obtained by using the analytic-continuation 
procedure of Kadanoff and Baym. (16/ 

Equation (37) is completely solved if we know G < and G >. However, 
it is more convenient to know G < and G r or G > and G ~, since any one of 
these combinations describes both densities and the propagation of distur- 
bances in the medium, and hence give a complete description of a non- 
equilibrium process. For  obtaining the time evolution equation of a 
generalized Wigner distribution transport equation, we require the time 
evolution equation for G < and knowledge of G r. The equation for G < is 

1 
1 l_GO_ 1 Sa R e S r ,  G ~ ] _ _ [ S  ~ ReGr ] 
1 l 

These were also employed by Kadanoff and Baym C1) for defining real 
quantities from the Green's functions and self-energies. Thus, Eq. (22) can 
be written as 
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given by Eq. (37). The equation for G ~ can easily be obtained from 
Eq. (14a) by taking the difference of the appropriate equation for G < and 
G > contained in Eq. (14a). A more straighforward and rigorous procedure 
is to convert the "contour" integral in Eq. (5) into integration on the real- 
time axis. This is done following Schwinger, (31 Craig, ~ Korenman, (~5/ or 
Keldysh (2) to yield the same matrix equation result as follows: 

(GO 0 (6  ~  0 Z~ o 
1 -Z 'a )G r ( G ~  ~X"G" QGa+XrFJ 

(38) 

where 

F = G >  +G < 

f2=Z  "> + X  < 

Equating the matrix elements yields the equations for G ~, G ~, and F given 
by Keldysh. (2) We have 

(G O 1 -  Za)Gr= I + XrGr 

(G ~  1 +X~G ~ 

(G O ~-  Xa)F=~G'~ + XrF 

(39) 

(4o) 

(41) 

These are the differential forms of the equations. One can also obtain the 
integral forms using the Dyson equation in the time contour of Eq. (10), by 
converting to real-time axis integration according to Schwinger, (3) 
Craig, (18) and Keldysh (21 and employing the linear canonical matrix 
transformation of Keldysh32~ The following matrix equation results: 

G~ G~ ~ 
( 0  r aa)=Q2Or Fo)+(GorO.rG ~ FOXaGa+GOr(QGa+XrF) ) (42) 

where the self-energies include the Z "a. Equation (42) yields the integral 
equation for a r, G ~ and F, 

G r = G or + G~ 

G ~ = G oa + G~ a 

F =  F~ + XaG a) + G~ a + XrF) 

(43) 

(44) 

(45) 
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Using Eq. (39), or Eq. (43), as obtained from Eq. (10), with corresponding 
results obtained from Eq. (11), and using the notation of self-energies in 
Eqs. (42)-(45), we may write Eq. (45) as 

F =  (1 + Gr~ r) F~ + XaG a) + Grf2G a (45a) 

The integral equation for G < can now be readily obtained from the above 
results, since 

G < = � 8 9  +G ~) (46) 

The same result for the integral form of G < can be obtained directly from 
Eq. (10) by converting the integration to the real-time axis, employing 
Schwinger's definition of the matrix form of the nonequilibrium Green's 

of the Keldysh function on the real-time axis, 0) but without use 
transformation, (2) to yield the following matrix relation: 

GC 

_ G  > GC = - G ~  G O ] 

\L-G;(Z>G~-~G>)J L-C;(2cC~-Z>G<)J/ 
(47) 

where G c (=  Gr+ G <) stands for the chronological Green's function and 
~c [-= _ ( G ~ _ G < ) ]  is the antichronological Green's function, with a 
similar definition for the self-energies. Equating the matrix elements for 
G~, we have 

G <> = G~(1 + ~aGa) + G~o(X~G a + ~rG~ ) (48) 

which gives exactly the identical result for G < as that obtained from 
Eq. (46). We also note that adding the equations for G > and G < of (48) 
gives the equation for F in Eq. (45), just as the sum of the differential equa- 
tions for G <. and G > in Eq. (14a) gives the differential equation for F in 
Eq. (41). Separating the terms that depend explicitly on the boundary 
condition (i.e., initial condition), we may write Eq. (48), using Eq. (43) for 
G r, as 

G X = G ' ~ G U +  (1 -Gro.~ r) 1G~(1 +NaGU) (49) 
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which can also be written as 

G ~ = GrZ~Ga+ (1 + Grz r) G~(1 +ZaG a) (50) 

where the second term in the last equation depends on the initial condition. 
Note that by adding the equations for G < and G > in Eq. (50) gives the 
equation for F given by Eq. (45a). 

3. PHASE-SPACE F R E Q U E N C Y - T I M E  D O M A I N  EVOLUTION 
EQUATION OF A Q U A N T U M  DISTRIBUTION FUNCTION 

Let us rewrite the differential equation for G < in Eq. (37) as 

(_o ,)1 
C3tl t l , / G < ( l ' l  = ~ [ ~ , G < ] ( 1 , 1 ' )  

1 
+ g  E z < ,  Re Gr](1, 1') 

1 1 { r , G  < + ~  {Z<,A}(1, 1 ' ) - ~  }(1, 1') 

where 
= ~ + Re Z "r 

(51) 

(52) 

We transform the space-time variables as follows: 

t~=T-~ /2 ,  r i = q - v / 2  
(53) 

t l ,=T+~/2,  r l , = q + v / 2  

W e  

conjugate variables following Schwinger (3) as 

p = (p, E), E = he) 

q =  (q, T) 

v = (v, ~) 

define 4-dimensional vectors in terms of these variables and their 

(54) 

In terms of these variables, we can immediately write Eq. (51) as 

1 
- -  < v i - ~ , G  < c3T G ( ,z ,q ,  T ) = t ~  ](v, z, q, T) 

1 
+ ~  [ Z  <, Re ar](u 7, q, T) 

1 {z.<, 
+~-~ A }(v, ~:, q, T ) -  {F, G<}(v, v, q, T) (55) 

822/61/5-6-18 
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The Weyl transform a(p, q) of any operator A is defined by the relation (17~ 

a(p, q)=f dv e(i/h)P~(q - �89 �89 

= ~r z, q, T) (56) 

Therefore, if we take the Weyl transform of both sides of Eq. (55), we 
obtain a phase-space frequency-time domain evolution equation for 
G<(p,q). 

To evaluate the Weyl transform of the terms involving commutator 
and anticommutator on the right-hand side of Eq. (55), we need the 
following result valid for any two operators A and B: 

~g'EA, B](v, ~, q, T) = 2i sin(A) a(p, q) b(p, q) (57) 

~V'{A, B}(v, ~, q, T) = 2 cos(A) a(p, q) b(p, q) (58) 
where 

A 2\Sq'Sp 8p ~q 

is the "Poisson bracket" operator. Applying these results to Eq. (55), we 
have the evolution equation for G <(p, q) given as 

8 G<(p,E,q ' T) 2 8T =~  sin(A)/-l(p, q) G <(p, q) 

2 
+ ~ sin(A) S<(p,  q) Re Gr(p, q) 

1 
+ ~ cos(A) X<(p, q) A(p, q) 

1 -~ cos(A)r(p, q) G~(p, q) (59) 

To the author's knowledge, Eq. (59) has not been given in the literature. 
What is usua!ly given by most authors are the first few terms of Eq. (59), 
obtained from the very beginning of their formulations, corresponding to 
the first-order terms in the gradient expansion of Eq. (59) to derive the 
quantum Boltzmann equation (QBE). Indeed, it easy to see that, by 
writing 

8----f-(P'E'q'T)=-\--~ 8E ~E -if-T/EG<(p'E'q'T) (60) 

expanding Eq, (59) to first order in the gradient, using Eqs. (33) and (34) 
for the definition of A and F, and noting that Kadanoff and Baym define 
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the Weyl transform with the multiplier i, we immediately recover the basic 
and classic result of QBE, given by Kadanoff and Baym [Eq. (9.30) of 
ref. 1 ]. Note that to first order in the gradient expansion, the last term of 
Eq. (59) resembles the relaxation-time approximation for "dilute" systems. 
However, all QBE results do not give the original Wigner distribution 
function equation in the limit of vanishing self-energies, and these clearly 
reflect the inadequacies of QBE for the application to a realistic simulation 
of quantum-based semiconductor devices. Therefore, all QBE results given 
in the literature are not applicable to advancing the numerical simulation 
of resonant-tunneling devices (7-12) to include all many-body effects and 
scattering mechanisms. Indeed, Eq. (59) also gives a more general result 
valid for particles with arbitrary energy-momentum relation, given by 
Kubo et al. (19) in the limit of vanishing self-energies or in the absence of 
collision terms. 

For numerical simulation purposes, an exact integral form of Eq. (59) 
is most useful, and is the form which reduces in the limit of vanishing self- 
energies to the original Wigner distribution function equation, which has 
been successfully used in the numerical simulation of RTD. (7 lo~ To convert 
to the integral operator form from the differential operator (trigonometric 
function of Poisson bracket operator) in the right-hand side of Eq. (59), we 
need the following general results, using 4-dimensional vectors derived in 
Appendix A, 

sin(A) a(p, q)b(p, q)= (h@ f dq' dp' KS(p, q -  q'; q, p -  p') b(p', q') (61) 

cos(A)a(p,q)b(p,q)= dq dp'K•(p,q-q';q,p-p')b(p',q') (62) 

where 

K•(p, q--q'; q, p -p ' )  

= f d v d j e x p f ~ j . ( q - q ' , j  

x { a ( p - J , q + 2 ) - a ( p + j , q - 2 ) } s i n ( P - P "  h v (63) 

K;(p, q -  q'; q, p -p ' )  

{ o)( 
x a(p+j,q--~ +a p - j , q +  c o s ~  v (64) 
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Applying the results given by Eqs. (61)-(64) in Eq. (59) and replacing T by 
t, we have the exact integral operator expression of the rhs of Eq. (59) 
given by 

< 2 f ~ G  (p,E,q,t)=(-~--~ d q ' d p ' K ~ ( p , q - q ' ; q , p - p ' ) G < ( p ' , q  ') 

2 {. 

+ ( ~  J aq' dp' K~(p ,  q - q'; q, p - p') Re G'(p', q') 

2 
(h4) 2 dq' dp' K~(p ,  q -  q'; q, p -  p') Im Gr(p ', q') 

1 
(h4) 2 dq 'dp 'K~r(p ,q -q ' ;q ,p -p ' )G<(p ' ,q  ') (65) 

Equation (65) is the most general expression for the time evolution of the 
particle density, - iG<(p,  E, q, t), in the phase-space/frequency-time 
domain. It describes all nonlocalities in the phase-space and energy-time 
domain, and therefore incorporates the "broadening" of a 0-function of 
energy due to "intracollisional field effects," and the broadening in a 
f-function of the time due to memory effects, in addition to the usual non- 
localities in the phase space of any scattering process. 

The time evolution of a generalized Wigner distribution function 
fw(P, q, t), which corresponds to the classical distribution function in the 
kinetic theory of gases, follows from Eq. (65) by multiplying both sides of 
the equation by - i  and integrating over all energies. Here we use the 
definition of Wigner distribution function in terms of field operators as 
the statistical ensemble average of the second quantized Klimontovich 
operator, (17) 

(66) 

Expressed in terms of Green's function, we have 

fw(p,q,t)= dve'P'V-iG < q - ~ v , t ; q + ~ v , t  

=~ dvdEe(i/~)PV-iG < q - - ~ , q + ~ v  

=~ dE-iG<(p,E,q,  t) (67) 
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where we have switch to the 4-dimensional vector notation in the second 
line of Eq. (67). Therefore Eq. (65) becomes 

N fw(p, q, t) 

2 C 
- (hT)2h J dq dp' d E K ~ ( p ,  q--q'; q, p - -p ' ) ( - - i )  G<(p ', q') 

+ (h--ff~ dq' dp' dE K)~(P' q - q ' ;  q' P -  P ' ) ( - i )  Re Gr(p" q') 

2 C 
J dq dp' dE K)~(p,  q - q'; q, p - p')( - i) Im Gr(p ', q') 

(h~2h 

1 f ,  (h~2 h dq d p ' d E K C r ( p , q - q ' ; q , p - p ' ) ( - i ) G < ( p ' , q  ') (68) 

Equation (68) represents an exact integral form of the equation for a 
Wigner distribution function in many-body quantum transport theory, 
which include all scattering mechanisms, all many-body effects, and all 
nonlocalities in the phase-space and frequency-time domain. Hence, Eqs. 
(65) and (68) describe all types of transport phenomena without any 
restriction on the variation of all quantities in phase space. The first two 
terms in the rhs of Eqs. (65) and (68), which derive from a commutation 
of two operators in Eq. (37), may be viewed as describing the motion of 
particles in phase space with a more complicated energy momentum 
relation due to the influence of potential and scatterings. The last two 
terms in these equations, which derive from the anticommutation of two 
operators in Eq. (37), describe particle transfers in phase space due to colli- 
sions and scatterings and correspond to the collision terms in the classical 
Boltzmann equation. In other words, whereas the first two terms of Eqs. 
(65) and (68) account for the complicated quantization of particle motion 
(i.e., include quantum tunneling and interference phenomena) in phase 
space, the last two terms account for the "broadening effects" on these 
motions due to scatterings and collisions. Indeed, for slowly varying 
systems, and for conditions of the validity of QBE to hold, the contribu- 
tions coming from the second terms of Eqs. (65) and (68) can also be 
neglected, leading to a relaxation type of approximation to the collision 
terms in the QBE. 

4. E V A L U A T I O N  OF T H E  S E L F - E N E R G I E S  

A diagrammatic evaluation of the nonequilibrium Green's function 
defined on a contour is analogous to its equilibrium counterpart (18),2 and 

2 However, see refs. 14 and 20 for exceptional cases. 
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therefore leads us to consider the corresponding fundamental quantities of 
many-body theory (2a) in terms of an "effective interaction" (closely related 
or referred to as the scattering amplitude or vertex function) and self- 
energies evaluated in an analogous manner to that of equilibrium many- 
body theory. Effective interactions also often obey the Dyson equation with 
a "proper self-energy" ~ represented by the proper polarization diagrams 
for the two-body Coulomb interactions, and by the sum of the so-called 
"bubble diagrams" for interactions involving the exchange of phonons. 

The first-order and lowest-order "irreducible" diagrams for the self- 
energy are often referred to as the Hartree-Fock approximation. For 
electron-impurity scattering in impure systems this corresponds to the 
virtual-crystal approximation. These first-order diagrams will only result in 
the renormalization of the energy-momentum relation for the particle. 
Next-order self-energy diagrams for electron-electron interactions are 
called the Born diagrams, and are similar to the Born approximation for 
the lowest-order self-energy for the electron-phonon interactions. 

Higher levels of approximation for the self-energies involve infinite 
resummation with a selected class of "irreducible diagrams" to all orders in 
the perturbation. Most often this approach leads to the well-known Dyson 
equation for the quantity being sought. The self-energy is expressed in 
terms of the effective interaction or vertex function, which is approximated 
as a summation to all orders of bubble diagrams or "ladder" diagrams, as 
in the random-phase approximation (RPA) or t-matrix approximation to 
the vertex function. The RPA diagrams correspond to the use of the 
dressed or effective interaction in the Born approximation. (22) 

For electron scattering by impurities the single-site t-matrix method 
involves infinite resummation of all terms involving repeated scattering 
by the same impurity site or repeated multiple scattering by the same 
impurity. This result in a self-energy expression which can either be given 
linear in the impurity concentration for the low-concentration limit, as well 
as including all orders of the concentation for large concentration of 
defects, which reduces to the virtual-crystal approximation in the limit 
when the relative concentration of defects approaches one. (23) More 
accurate approximation schemes for the self-energy of electron-impurity 
scattering go by the name of the coherent potential approximation (CPA) 
and are basically obtained by summing the same single-site diagrams as 
before but using an "effective medium" Green's function instead of the 
unperturbed Green's function of the host lattice, with self-consistent 
scattering potential. (23) 

4.1. Self-Energy for Scattering by Impurities 

For quantum-based devices made of "decent" (low concentration of 
defects) semiconductor materials, an approximation to the self-energy can 
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use the single-site t-matrix approach for the retarded self-energy. In order 
to apply to the transport equation derived in Section 3, we need to use 
Weyl-transform quantities. Confining ourselves to pure Coulombic interac- 
tion with the defects (i.e., excluding spin-dependent interactions and/or the 
"Kondo effect"), we can write the Weyl transform of the retarded (22~ self- 
energy as 

St(p, q)=niT(p, q) (69) 

where ni is the impurity density, and T(p, q) is the Weyl transform of the 
T-matrix operator, which can be a very complicated function of the single- 
site t-matrix. Note that, in general, the multiple single-site scattering 
approach will result in expressions for the self-energies which have a linear 
dependence on the impurity density ni. The Weyl transform of the T-matrix 
obeys the following equation: 

1 T(p, q) = V(p, q) + ~ f dv dr' dj dj' e (i/h)j ~'e (i/h)j,.v 

x V ( p + j , q - 2 ) T ( p + j ' , q + ~ )  (70) 

where V(p, q) is the Weyl transform of the impurity potential. From the 
identity relations (in 4-dimensional vector notation) 

~ f d q e  (-#h)~k k')'qa(p,q,:akk, 6(p k2k '  ) (71) 

a(p, q) = f d(k - k') e (i/h)(k-k') 'q akk, (~ 

one can readily show that indeed by performing the transformation of 
Eq. (71) the following equation results: 

h- 7 dq exp • (i/h)(k--k')'q T(p, q) 

1 

X e - ( /h) j '  V 'e- ( i /h)J '  re (i/h)(k--k') .q 

x V ( p + j , q - 2 )  T (p+j ' , q+~)  

+ ~  f dqe ~i/h"k-k"UV(p,q) (73) 
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which reduces to the equation (in 4-dimensional vector notation) in 
"momentum" space 

T~k, = Vkk, + f dr/ Vk~ T,k, (74) 

The above equation can easily be shown to be identical to the integral 
equation for the T-matrix given by Mahan. (24) 

So far we have only obtained "retarded quantities" through analogy 
with equilibrium scattering theory. However, for impurity scattering 
problems, the equation for the self-energy defined on the contour is mathe- 
matically similar to that of the Green's function defined on the contour, 
Eq. (10). Therefore, using the same procedure for converting the equation 
defined on the contour to an equation defined in real time, we arrive at an 
equation similar to Eq. (47) for the self-energy instead of the Green's function. 
Equating the matrix elements of Z <>, we also obtain an equation similar to 
Eq. (50), without the second term, since Z~ is zero for impurity scattering. 
We have 

Z ~ =ZrG~Z a (75) 

which can be written in terms of Weyl transform quantities as 

1 
Z~(p, q ) = ( - ~  f dr/ dr/' d~ dff dv dv' dj dj ' 

• e -  ( 1 / h ) ~ . . ' e -  (uh)~' .  n e (i/h)j.V'e--(i/h)j"v 

r/ V 
x Zr (P + fl + J , q - - ~ - ~ )  

( t (  *) v' Z '~ + r/ + ~  p+~' ,q  (76) xG ~ p + f l + j ' , q - ~  

Using Eq. (71) applied to both sides of Eq. (76), we arrive, as we should, 
at the following result: 

k') = f o]6 dr~ Z~(k, 6) G~(6, q) Z"(r/, k') (77) Z~(k, 

which, with random-impurity-distribution averaging and without external 
potential, yields 

Z~(k, k ) = n , f  dr~ ITknl 2 G~(r/) (78) 

where use is made here of the relation [Zr] * = --r a. The above result is also 
given by Mahan. (24) For simulating quantum-based devices the self-energies 
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must be calculated self-consistently using Eq. (76) or Eq. (77) together with 
Eq. (72). From Eqs. (34) and (76), we have 

1 
F( p, q ) = (--~ f dtl d~' dfl dfi' dv dv' dj dj' 

xexp[~-~-( f l . r f+f l ' . t l+j .v '+j ' .v)]  

x ~  r p + f i + j , q - - ~ -  A p+f l+j ' ,q - -~+-~  

x ~ " ( p + f l ' , j + ~ )  (79) 

In "momentum" space, using Eqs. (34) and (77), the above equation 
reduces to an equation corresponding to Eq. (74), 

r(k, k') = f d5 dt 1Xr(k, c5) A(c5, q) Za(~l, k') (80) 

In applying to the general quantum transport equation, Eq. (68), X<(p, q) 
and F(p, q), which determine the kernel of integration, will have to be 
calculated self-consistently from Eqs. (76) and (79), respectively. The 
numerical implementation for doing the simulation will involve an iterative 
scheme to incorporate the necessary self-consistency, discussed in Section 5. 

4.2. Electron Scattering with Ouantized "Boson" Wave Field 

The scattering of particles in a solid by a quantized "boson" wave field 
is generally described by a second-quantized Hamiltonian operator having 
the general f r o m  (2s-27) 

H =  He(g f ,  ~ ) +  HF(~, r r162 (ft. ~, r (81) 
where 

Hp(W, 7 t )=~]  T*~(R,t) E~ - ~ :  R T~(R,t) (82) 
R,a 

I �89 g IVA [ 2], em field 

t)], 

acoustic phonons 

polar crystal 

~P~(R, t), phonons 
HpF(~[JI, (//, 7~, q~) = - -  2 ~P~(R, t) yi~a(R) Ta(R, t) (Ai(R, t), photons 

R,~,fl 

(84) 
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E~(k) is the energy-band function of Bloch electrons, R denotes the lattice 
point coordinate, (17) and the summation convention for all indices is used. 
For phonons in a solid, the scalar 7 is related to the ratio of atomic mass 
to the effective charge of resulting dipole moments and g is related to 
the elastic constant of a lattice of atoms. The Greek indices include all 
quantum labels. For an electromagnetic wave field, 7 = 1/4rcc2 and g = 1/4n. 
The equal-time commutation rules for the field operators are as follows: 

A. For matter-wave field operators: 

{ t), t)} = { t), t)} = 0  (85) 

{ gt~(R, t), e~(R',  t)} =6~,6RR, (86) 

B. For the phonon wave field (~b- P): 

[rc/(R, t), Pj(R', t)] =-h a,/3Ra, (87) 
l 

[Tz,(R, t), zj(R', t)] = I-Pz(R, t), Pj(R', t)] = 0  (88) 

C. For the electromagnetic photon wave field (zt =/It/4~c2): 

[A,(R, t), Aj(R', t)] = [Tzz(R, t), zrj(R, t)] = 0 (89) 

[Tzt(R, t ) ,Ai(R , t)] h r r ' ~-~- - -  ~ 0 6 R R ,  (90) 
l 

T T where 6o. 6aa, is the so-called transverse f-function (V. A = 0), which in the 
continuum limit is given by 

cS~(x- x') = ( ~  ( x - x ' ) l } @ O - ~ ) ( 9 1 )  

Note the universal form of the interaction Hamiltonian operator given by 
Eq. (84), characterizing the interaction of the quantized wave field with the 
particles. Indeed, the impurity scattering interaction Hamiltonian operator 
discussed in the previous section can also be cast in the form of Eq. (84) 
(e.g., the Hamiltonian of the famous Kondo problem in dilute magnetic 
alloys). 

The coupling matrix 7i~t~(R) in Eq. (84) has the following expressions 
for electrons in a solid. 

A. For phonons: 
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B. For photons: 

(93) 

C. For electron-impurity scattering (given here for completeness) 

Z,e2 ) 
-- e -'~'(x-R) S ~ a W a ( x - R ) d x  3 (94) ~/~(R)--f W*(x R)\tx_R ] 

where the W function is the localized Wannier function and S~ is the Pauli 
matrix for the case of magnetic impurities. 

In what follows, we will evaluate the sums over lattice points as an 
integral (i.e., continuum approximation of the lattice coordinates, 
Y'~R--*~d3R)" Dropping the Greek indices, for simplicity (i.e., one-band 
model and spin-independent interactions), it is easy to see that the 
approximation to the electron self-energy for electron-phonon scattering is 
very similar to that which arises for the electron-electron Coulomb 
interaction. To see this, one writes the effective equation for the electron 
field operator as (25) 

ih ~ TU(x)= E~ ( ~ V,,) ~(x) 

+ 72 f dx2 Do(x, x2) gtt(x2) ~U(x2) ~U(x) 

1 +~fax2 V(x, x2)~(x2) ~(x2) ~'(x) (95) 

where the last term represents the electron-electron Coulomb interaction 
corresponding to the residual screened Coulomb interaction between Bloch 
electrons. The photon propagator Do(x1, x2) multiplied by the square of 
the coupling constant ~, represents the interactions between Bloch electrons 
through the exchange of phonons. Thus, the perturbation treatment of 
electron-phonon scattering is formally similar to that for the electron- 
electron interaction problems. (22) 

A meaningful and significant contribution to the electron-phonon self- 
energy is given by a "one-phonon" diagram similar to the Hartree-Fock 
exchange diagram of the electron-electron scattering [note that in contrast 
to V(x, x2), Do(x, x2) is nonlocal in time] defined on the time contour as 

Z(1, 2) = iG(1, 2) D(1, 2) (96) 
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Therefore by fixing the time order, we immediately obtain, in real time, 

X<>(1, 2 )=  iG~(1, 2)D<>(1, 2) (97) 

Equation (97) immediately leads to the expression for the retarded and 
advanced self-energies in terms of the Green's function and phonon 
propagator: 

x,r"~(1,2)=i[Gr'a(1,2)D>(1,2)+G<(1,2)Dr'a(1,2)] (98) 

To avoid the immense complication of solving the complete quantum 
transport equation for phonons to obtain the nonequilibrium phonon 
propagator, we make some simplifications. We assume that we can use the 
phonon propagator for a phonon system at equilibrium. Note, however, 
that the phonon relaxation times may be comparable to the electron transit 
time across the quantum region of a device. (74) 

In applying the above results for phonon scattering to Eq. (68), we are 
interested in the Weyl transform equivalent of Eq. (97). We have, in four- 
dimensional vectors, Eq. (54), the following 

~ (p, q) = i f dv e ( i / h ) p v  

xG~(q- �89 q+�89 

x D X(q _ �89 q + %) (99) 

The phonon propagator for a phonon system at equilibrium satisfies 

D~(q 1 - 5v, q +  � 8 9  

Hence we have 

1 
D <> (v) = ~-~ f dk e (z/h)k" D <> (k) 

i f dk dve O/~)(p+k)'v 2;~(p, q)= ~ 

• G ~ ( q -  �89 v, q + %) D~(k) 

=h--- ~ dkG~(p+k,q)D~(k)  (lOO) 

and therefore we also have 

1 
F(p, q)= -~-~ f dk {G>(p+k, q)D>(k) 

-G<(p+k ,q )  D<(k)} (101) 
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The expressions for the Fourier-transformed equilibrium phonon 
propagators are 

D<(k,E')= --i72{(Uk + l)h6(E' +Qk)+ Nkh6(E' +Qk)} (102) 

D > (k, E') = -i72{ (U k + 1)h 3(E '+  s + Ukh 6(E'- s } (103) 

where 12 k is the energy-momentum relation for phonons. Substituting the 
explicit expressions for D>(k ,E  ') and D<(k ,E  ') in the expression for 
X~(p, q), and F(p, q) above and integrating with respect to E', we obtain 
the following expressions: 

'f 
~<(P,q)=~-3 d k { G < ( p + k , E + s  q) 7~(Nk+l) 

+ G<(p + k, E -  f2k, q) 7k2Nk ) (104) 

Z'>(p, q) = ~  dk{G>(p+k,E-(2k, q)22(Nk+l) 

+ G > (p + k, E +  ff2k, q) 72Nk} (105) 

1 
r(p, q) = ~ f dk {72Nk[-A(p + k, E +  s q) + a(p + k, E -  (2k, q)] 

+iT~[G>(p+k,E-s q)-G<(p+k,E+s q)]) (106) 

We note that for a uniform system at steady-state conditions 
(independent of q), the expressions for X<(p, q), Z'<(p, q) and F(p, q) 
reduce to those given by Mahan. <24) For F(p, q) of a uniform system at 
steady state, use can be made of the following exact relations: 

- iG<(p,  E )=  fw(P, E)A(p, E) (107) 

iG>(p, E )=  E1 -fw(P, E)] A(p, E) (108) 

where 

1 t" 

J dE A(p, E) 1 
h 

which follow from the equal-time commutation relations for the field 
operators. These relations are exact, since the Weyl transform of the 
product of operators for uniform systems at steady state reduces to the 
product of their Weyl transforms. However, for nonuniform system and/or 
the nonstationary state, this relations do not hold and the so-called 
"Kadanoff-Baym Ansatz 0,6,2.)'' is generally not valid for nonequilibrium 
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transport. The "Kadanoff-Baym Ansatz" is only valid up to the first order 
in the gradient (i.e., has zero-order accuracy) and the so-called "generalized 
Kadanoff-Baym Ansatz" given by Lipavsk~, et al. (2s) can be shown to be 
only valid up to the second order in the gradient expansion (Appendix B). 
When the last two relations are substituted in the expressions for _r< (p, q) 
an d F(p, q), we obtain 

i 
Z'<(p, q ) = - ~ f  clk {fw(p + k, E + ~ k ) A ( p  +k,  E-+-~r~k)7[(Uk + 1) 

+ fw(P + k, E -  Ok) A(p + k, E -  Ok) 7~N k } (109) 

i 
r(p,  q ) = - ~ f  dk {y2[Nk +fw(p + k , E +  f2k) ] A(p+ k, E + Q k )  

+ y ~ [ N k + l - - f w ( p + k , E - - Q k ) ] A ( p + k , E - ~ 2 k )  } (110) 

which agrees with the result given by Mahan/24) For application to the 
simulation of high-speed devices using Eq. (65) or (68), the more general 
results will have to be used self-consistently through an iterative numerical 
procedure. In the next section we will use the last two equations to 
highlight the collision terms in Eqs. (65) and (68). 

5. SELF-CONSISTENT SOLUTION A N D  S I M P L I F I C A T I O N S  OF 
M A N Y - B O D Y  Q U A N T U M  T R A N S P O R T  EQUATIONS 

The exact quantum transport equations (65) and (68) do not stand 
alone for two reasons: (a) these equations are coupled to the equation for 
G r (or G > ) and to "boson" field propagators, (b) the kernel of the integral 
operators depends on G r (or G >) and the sought after solution G < (and 
hence fw), as well as, in general, to the "boson" field propagators. In 
Section 4.1, we made the assumption that the phonon propagator is known 
and corresponds to the propagator for a phonon system at equilibrium. 
Besides the approximations made in the self-energy expressions, this 
constitutes one major simplifications of Eqs. (65) and (68), by giving up 
self-consistency with respect to the phonon (or interacting "boson") 
systems. 

However, self-consistency with respect to the particle system must be 
retained. Following the well-known standard technique of all many-body 
calculations, one tries to achieve self-consistency by an iterative procedure. 
Therefore, in solving Eqs. (65) and (68), one uses "noninteracting" G~ and 
G; (or G~) to evaluate the kernel of the integral operator, and all other 
terms in the right-hand side (rhs) of these equations [note that ~(p ,  q) 
includes Re _rr(p, q)]. Then the known "operators" in the rhs of Eqs. (65) 
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and (68) are used to solve for new G < and fw. The equation for G ~, 
Eq. (39) or (43), will also be solved for new G r, after which the process may 
be repeated with the new set of approximate G < and G r. 

In the practical numerical simulation of quantum-based devices, (7-12~ 
the first iteration of the above-mentioned self-consistency procedure may 
represent a more accurate enough solution, depending on the choice of the 
starting solutions for the iteration process. A clear choice for quantum- 
based device analysis would be the solutions obtained for noninteracting 
particles. This means that the zero-order approximation neglects all the 
terms except the first term in the rhs of Eqs. (65) and (68). The numerical 
procedure and technique for obtaining time-dependent and steady-state 
solutions for a resonant-tunneling device (RTD), within the effective-mass 
approximation for noninteracting particles, has now been established, and 
obtaining the solution of these devices is by now a routine task. (7-9~ 

When ffI(p,q) in Eq. (59) can be written in the effective-mass 
approximation as 

p2 
H(p, q) = 2~--~+ V(q) (111) 

where V(q) is the potential in the device region, then Eqs. (65) and (68), 
in the absence of collisions and scattering, reduce to the following 
expressions: 

c3 G<(P, E, q, t )=  - -~P  V ~3t m* qG<(p'E'q't) 

+~;dp'dv[V(q+~)iV(q-�89 
• (65a) 

~fw(P, q, t)= --~-s Vqfw(p, q, t) 

x sin I (~S~--) . Vl fw(p', q, t) (68a) 

Equations (65a) and (68a) are the well-known forms of the time evolution 
equation for the Wigner distribution function for noninteracting particles. 
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The time-dependent and steady-state solutions of these equations have 
been given by Frensley ~7) and by Jensen and Buot. (s 9) A random-phase 
approximation to the electron-electron interactions within the effective- 
mass approximation can easily be incorporated in their numerical solutions 
by simultaneously solving the Poisson equation together with Eq. (68a), 
thus obtaining an improved initial starting value for G~ and G~. 

Another approach, which is only of academic interest here, often taken 
in the literature is to obtain the time evolution equation of the Green's 
function to first order in the gradients, leading to the so-called quantum 
Boltzmann equation (QBE). Therefore, results often given in the literature 
correspond to the result obtained by expanding Eq. (59) up to the first 
order in the gradient. We immediately obtain, up to first order in the 
gradient expansion of Eq. (59), the following: 

~G < 
~t (p' E, q, t )=  [/ t(p,  q), G<(p, q)] + [Z<(p,  q), Re Gr(p, q)] 

+i{s G>(p,q)-Z>(p,q)G<(p,q)} (112) 

where we have used the definitions of A(p, q) and F(p, q) from Eqs. (33) 
and (34), and the Poisson bracket notation of Kadanoff and Baym. (~) 
From the definition of/~(p, q) given by Eq. (52), and noting that Kadanoff 
and Baym define the Weyl transform with multiplier i, we immediately 
recognize that the last equation is identical to the one given by Kadanoff 
and Baym, (1) which has become the basis for almost all investigations 
concerning high-field transport of submicron devices. (4-6) 

Clearly, the QBE result is markedly different from Eq. (65a) in the 
limit of vanishing self-energies and hence precludes at the outset quantum 
effects due to tunneling and quantum interference, and therefore is not of 
any use for the numerical simulation of RTD. A most instructive way to see 
this is to examine the effective potential as seen by the particles in Eq. (68a) 
compared with that of Eq. (112). Whereas in Eq. (112) the particles 
essentially "feel" the classical potential, plus many-body corrections from 
the self-energies, the particles in Eq. (65a) see an effective potential Vc, 
which is the sum of a classical potential and a quantum potential, defined 
by the following equation(9): 

1 , 
(VqV~fr)Vpfw(p,q)=-~f dp V(q,p-p')fw(p',q) (113) 

where V(q, p) is defined by (68a) and may include all many-body correc- 
tions just as in Eq. (112). Vc~ is responsible for the tunneling mechanism in 
RTD.(9) 
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At the end of Section 3, we referred to the first two terms on the rhs 
of Eqs. (65) and (68) as describing the complicated quantization of particle 
motion in phase space, including quantum tunneling and interference 
phenomena. The first term clearly represents the motion of particles with 
an "effective single-particle Hamiltonian" given by Eq. (52). The second 
term represents "bona .fide" many-body effects in the single-particle kinetics 
and may be viewed as a "second-order" kinetic correction to the particle 
motion due to collisions and scatterings. (14) The last two terms account for 
the transfer of particles in 4-dimensional vector phase space due to 
collisions and scatterings. To see this, let us evaluate the last two terms for 
a uniform system at steady-state conditions for impurity scatterings and 
phonon scatterings. 

5.1. Impurity Scattering 

For a uniform system at steady state, the last two terms of Eq. (65) or 
Eq. (59) yield 

where 

Z<(p)  A ( p ) -  F(p) G<(p) 

- - ~  [Wp~k(E) G<(k, E ) -  W k ~ p ( E  ) G<(p, E)] 
k 

(114) 

Wk ~ P = ni[ Tkp(E)l 2 A(k, E) (115) 

Wp~ k :n~lTpk(g)l 2 A(p, E) (116) 

Clearly the rhs of Eq. (114) is identical to the usual form of the collision 
operator of the Boltzmann equation. 

5.2. Electron-Phonon Scattering 

Using Eqs. (109) and (110) for obtaining L'<(p) and F(p), 
respectively, we can write 

- -  i [ Z  < ( p )  A ( p )  - F ( p )  G < (p)] 

= ~  [Wpkf,,(p + k, E+g2k) + Wp~kfw(p+k, E--Ok)]  
k 

- ~  [ l~;kfw( p, E)+  W~k/w(P, E)] (117) 
k 

822/61/5-6-19 
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where 

Wpk = A(p + k, E + (2k) A(p, E) 7~(N k + 1) (118) 

Wp~k = A(p + k, E- ~k) A(p, E) 72Nk (119) 
e Wu, = A(p + k, E -  f2k) A(p, E) 7~[N k + 1 - f ( p  + k, E -  f2k) ] (120) 
a Wkp=A(p+k,E+f2u) A(p ,E)7~[Nk+f (p+k ,E+~k)  ] (121) 

A more revealing from for Eq. (117) is obtained if the spectral function 
A(p, E) is approximated as a delta function, A(p, E)=  h 6(E-Ep).  Then 
Eq. (117) reduces to the form of the collision operator of a Boltzmann 
equation as 

- i  f h dE [Z'< (p) A ( p ) -  r(p) G<(p)] 

where 

W k ~  k' 

rV~,~k 

=2 [Wk~k,/~(k')-- Wk,~k/w(k)] 
k' 

(122) 

= (h )  • ( E  k - E k, + ~"~k'-k) ] 22' k ( N k  ' k + 1)[-1 - f ~ ( k ) ]  

+ (h) 5(E k - E  k, 2 - f 2  k, k) yk,_kNu, k[1--fw(k)] (123) 

(h) c](Ek--Ek,--.Qk,_k) 2 = 7k' k(Nk ' k + l ) [ 1 - - f w ( k ) ]  

+(h) 6(Ek_Ek,+f,2k,_k) 2 7k' kNk'--k[ 1 - fw(  k )] (124) 

The last result for the collision operator agrees with the collision operator 
recently derived by Lin and Chiu (29) insofar as one can replace the spectral 
function by a delta function, as can be shown by rearrangement of terms, 
appropriate change of variable k ' - k  to the phonon wavevector q, and 
performing the sum over q in place of k'. However, contrary to the claim 
made by them, the above forms are only valid for uniform systems at 
steady state. Moreover, their formalism is based on a first-order gradient 
expansion from the beginning and hence has very limited application to the 
simulation of realistic high-speed devices, characteristics of all QBE results. 

For phonon scattering at low enough temperature, we may ignore 
the contribution of Eqs. (123), so that the contribution to the collision 
operator will solely come from --F(p) G<(p) and the rhs of Eq. (122) may 
be written as -fw(k)/r, where r is the relaxation time. Another approxima- 
tion to Eq. (122) in terms of the relaxation-time approximation, which is 
strictly valid only near equilibrium, is based on the use of the normalized 
equilibrium distribution function fo(k) and proceeds as follows: 

[Wk~k,fw(k')-- mk,~kfw(k)] = 1 2  [fo(k) fw(k ' ) -  fo(k') fw(k)] 
k '  b k , 

(t25) 
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where 1 
- = Z Wk'~ k (126)  
"( k '  

l f 0 ( k )  = (Wk~k,), --1 fo (k ' )  = ( W k , ~ k )  (127) 

Therefore, for constant relaxation time r, fo(k)/r represents the transition 
rate Wk~ k, in momentum space. Recently, Frensley ~12) has employed this 
approximation to investigate the effects of collisions on the device charac- 
teristics of RTD. This paper serves to clarify his approximation, which was 
guided by making an analogy to the Boltzmann equation. Since fw(P, q) is 
a strong function of q in RTD, even at steady state, (7'9) and furthermore 
since fw(P, q) is far from thermal equilibrium, where complete detailed 
balance holds, this approximation is a poor approximation and is far from 
being self-consistent. The "Fokker-Planck collision operator" in k space 
also employed by Frenstey (12~ does not seem to llave any theoretical basis 
within the many-body quantum transport theory, since all derivatives 
are governed by the Poisson bracket operator. Moreover, for transient 
simulation of RTD all of the above approximations are clearly suspect. 
Serious numerical work is urgently needed for more accurate treatment of 
scattering and collisions in quantum transport. 

6. C O N C L U S I O N S  

We have presented a well-rounded and exact formalism of many-body 
quantum transport which serves to unify various approaches based on (a) 
the generalized quantum Boltzmann equation, (b) the time evolution 
equation of the Wigner distribution function first derived by Wigner, (c) 
density-matrix projection operator techniques, and (d) path integral 
techniques. ~21~ An elegant treatment for problems of Bloch electrons in the 
presence of a uniform external electromagnetic field (24~ is straightforward 
and follows the Weyl Wigner quantum mechanical techniques employed 
by the author in previous worksJ 3~ This paper serves to fill the need of 
device physicists for advancing the numerical simulation of quantum-based 
devices, particularly tunneling devices such as RTD, to include scatterings 
and collisions while retaining full quantum effects such as tunneling and 
quantum interference. Indeed, this investigation is in part motivated by the 
absence in the literature of a quantum transport formulation to all orders 
in the gradients, suitable for realistic device analysis. The often treated 
generalized QBE essentially proceeds as a first-order gradient expansion 
from the very beginning and therefore has very limited use for modeling 
realistic devices. We have shed light on approximations that have been 
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recently attempted in the literature for including scatterings in the Wigner 
distribution-function formulation of quantum transport for simulating 
quantum-based devices. Further serious and large-scale numerical work is 
clearly needed for more accurate understanding of the effects of scattering 
and collision in quantum-based electronic devices. 

A P P E N D I X A .  EXACT INTEGRAL O P E R A T O R  OF THE 
Q U A N T U M  T R A N S P O R T  E Q U A T I O N  

Let us denote the Weyl transform of two operators A and/~ as a(p, q) 
and b(p, q), respectively. The Weyl transform of A/~= (~ is denoted as 
c(p, q). Then we have the relation 

c(p, q)=  [exp(iA)] a(p, q) b( p, q) (A1) 

where A is the "Poisson bracket" operator used in the text. First let us 
evaluate the expression 

exp - i  2 ~p ~qjja(p,q)b(p,q) 

We do this by first writing the Weyl transforms a(p, q) and b(p, q) as 
Fourier-transformed quantities: 

a(p, q) = ~ dve ( i /h )p  . v  Ka(q - ~v,1 q + �89 ( a 2 )  
d 

du c ( i / h ) q . u  Kb(p 1 u b(p,q)=! +~ , p -  
d 

(A3) 

Making use of well-known "differential displacement" operation, we thus 
obtain 

[ exp ( - i ~ g(a) " O(~--~q ) ] a( p' q ) b( p' q 

_h4fdudq' [ ~ ( q - q ' ) . u l } a + - ~ ,  (A4) 

where the inverse Fourier transform relations corresponding to Eqs. 
(A2)-(A3) were used to bring back Weyl-transformed quantities in Eq. (A4). 

Let us write b(p, q') in Eq. (A4) by making use of the alternate expres- 
sion of Eq. (A3) as 

f dve (i/h)pv Kb(q ' -  �89 q'+ �89 (A5) b(p, q') 
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Applying the remaining differential operation in the Poisson bracket 
occurring in the exponent A, proceeding in a similar manner as before, and 
then making a change of variables 

/4 ~=J 
~)! 

q -  q ' -  (A6) 
2 

p - p ' =  - j '  

we obtain 

1 ( ,  

[exp(iA)] a(p, q)b(p, q)= ,~cv,~ | dv dr' dj dj' 
( n ) - J  

;j ;j, 

xa p + j , q -  b p + j ' , q +  (AT) 

By a similar procedure, we have 

[exp(- iA)]  a(p, q) b(p, q) 

_ 1 i j . v , ) e x p ( _ s  (h4)2f d v d v ' d j d j ' e x p ( - - ~  

xa  p - j , q +  b p + j ' , q +  (A8) 

We combine Eqs. (A7) and (A8) and make the following further change of 
variables, 

p + j ' = p '  

V ~ q +-~=q' 
(A9) 

to bring the results into an integral operator form. Noting that the sum 
and difference of a( p + j, q -  v/2 ) and a( p - j, q + v/2 ) is "even" and "odd," 
respectively, in the variables j and v, we may therefore now write 
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sin(A) a(p, q) b(p, q) 

q,] 
x i sin (A10) 

cos(A) a( p, q) 

=(h4) 2 +a p - j , q +  

• cos [ 2 J ' ( ~ - q ) l  cos ( ~ - ~ . v )  } b(p*, q' ) (All) 

We have chosen to write the kernels of the integral operator in Eqs. (A10) 
and (All) in the form given by Eqs. (63) and (64) in the text, since in the 
absence of scattering and collision the integral over j can often be carried 
out when written in the form given in the text. 

b(p, q) 

A P P E N D I X  B. T H E  K A D A N O F F - B A Y M A N S A T Z  

Recently Lipavsk~ et al. (LSV) (28) proposed a generalized Kadanoff- 
Baym (KB) Ansatz by writing G ~ as a product of two operators, one being 
the density matrix operator for electrons or holes. The idea is to separate 
the operator whose Weyl transform gives the Wigner distribution function 
for electrons or holes. However, we see in Appendix A that in general, 
granted that the separation can be done, the resulting Weyl transform of 
G ~ will not be a simple product of the Weyl transform of the particle 
density-matrix operator and that of the Weyl transform of the other 
operator (obtained by some ad hoc choice by LSV). The question then 
becomes, what is a more accurate way of achieving the separation, so 
that the Weyl transform is approximated by a simple product of Weyl 
transforms? 

As originally proposed by LSV, the generalized KB Ansatz is written, 
in our notation, as 

- i G  ~ = i(Gr p ~ - p~G ~) (B1) 

where the Weyl transform ~17) of p< (electron density-matrix operator) is 
the Wigner distribution function. We can immediately see that the Weyl 
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transform of - iG  < is equal to A(p, q)fw(P, q) plus first-order and higher- 
order gradient corrections. 

A more accurate Ansatz can easily be obtained by writing Eq. (B1) as 

i i -iG  { o  r, G ~ } (B2) 

which is clearly equal to A(p, q)p~(p, q) plus second-order and higher- 
order gradient corrections. Equation (B2) is the generalized KB Ansatz 
referred to in the text; it is more accurate and retains the full symmetry 
between electrons and holes. 
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